The Inverse of Covariance Matrices for the Arma (p, Q) Class of Processes

نویسندگان

  • R. CHINIPARDAZ
  • T. F. COX
چکیده

Abstract – Analysis of time series data can involve the inversion of large covariance matrices. For the class of ARMA (p, q) processes there are no exact explicit expressions for these inverses, except for the MA (1) process. In practice, the sample covariance matrix can be very large and inversion can be computationally time consuming and so approximate explicit expressions for the inverse are desirable. This paper offers some of these approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On limiting spectral distribution of large sample covariance matrices by VARMA(p,q)

We studied the limiting spectral distribution of large-dimensional sample covariance matrices of a stationary and invertible VARMA(p,q) model. Relationship of the power spectral density and limiting spectral distribution of large population dimensional covariance matrices of ARMA(p,q) is established. The equation about Stieltjes transform of large-dimensional sample covariance matrices is also ...

متن کامل

Functional Clustering of Periodic Transcriptional Profiles through ARMA(p,q)

BACKGROUND Gene clustering of periodic transcriptional profiles provides an opportunity to shed light on a variety of biological processes, but this technique relies critically upon the robust modeling of longitudinal covariance structure over time. METHODOLOGY We propose a statistical method for functional clustering of periodic gene expression by modeling the covariance matrix of serial mea...

متن کامل

On transformations of multivariate ARMA processes

Let Xt be an /-dimensional ARMA (p, q) process. Let g: U l -> W be a measurable function. Define a process Zt by Zt = g(Xt). Generally, Z.is not an ARMA process. However, we are interested in such functions g, for which Zt is also an AR process. It is important to know the orders of the process Zt. In the most cases we find only some bounds for them. From the practical point of view, our consid...

متن کامل

On some probabilistic properties of periodic GARCH processes

This paper examines some probabilistic properties of the class of periodicGARCH processes (PGARCH) which feature periodicity in conditional heteroskedasticity. In these models, the parameters are allowed to switch between different regimes, so that their structure shares many properties with periodic ARMA process (PARMA). We examine the strict and second order periodic stationarities, the exist...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004